Resampling fMRI time series.
نویسندگان
چکیده
The problem of selecting a threshold for the statistical parameter maps in functional MRI (fMRI) is a delicate issue. The use of advanced test statistics and/or the complex dependence structure of fMRI noise may preclude parametric statistical methods for finding appropriate thresholds. Non-parametric statistical methodology has been presented as a feasible alternative. In this paper, we discuss resampling methods for finding thresholds in single subject fMRI analysis. It is shown that the presence of a BOLD response in the time series biases the estimation of the temporal autocorrelation, which in turn leads to biased thresholds. Therefore, proposed resampling methods based on Fourier and wavelet transforms, which employ implicit and weak models of the temporal noise characteristic, may produce erroneous thresholds. In contrast, resampling based on a pre-whitening transform, which is driven by an explicit noise model, is robust to the presence of a BOLD response. The size of the bias is, however, largely dependent on the complexity of the experimental design. While blocked designs can induce large biases, event-related designs generate significantly smaller biases. Results supporting these claims are provided.
منابع مشابه
Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains.
Even in the absence of an experimental effect, functional magnetic resonance imaging (fMRI) time series generally demonstrate serial dependence. This colored noise or endogenous autocorrelation typically has disproportionate spectral power at low frequencies, i.e., its spectrum is (1/f)-like. Various pre-whitening and pre-coloring strategies have been proposed to make valid inference on standar...
متن کاملResampling methods for improved wavelet-based multiple hypothesis testing of parametric maps in functional MRI
Two- or three-dimensional wavelet transforms have been considered as a basis for multiple hypothesis testing of parametric maps derived from functional magnetic resonance imaging (fMRI) experiments. Most of the previous approaches have assumed that the noise variance is equally distributed across levels of the transform. Here we show that this assumption is unrealistic; fMRI parameter maps typi...
متن کاملWavelets and statistical analysis of functional magnetic resonance images of the human brain.
Wavelets provide an orthonormal basis for multiresolution analysis and decorrelation or 'whitening' of nonstationary time series and spatial processes. Wavelets are particularly well suited to analysis of biological signals and images, such as human brain imaging data, which often have fractal or scale-invariant properties. We briefly define some key properties of the discrete wavelet transform...
متن کاملCharacterization and correction of interpolation effects in the realignment of fMRI time series.
Subject motion in functional magnetic resonance imaging (fMRI) studies can be accurately estimated using realignment algorithms. However, residual changes in signal intensity arising from motion have been identified in the data even after realignment of the image time series. The nature of these artifacts is characterized using simulated displacements of an fMRI image and is attributed to inter...
متن کاملAnalysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension
Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 25 3 شماره
صفحات -
تاریخ انتشار 2005